The Flexible $Fe_2(\mu-O)_2$ Diamond Core: A Terminal Iron(IV)—Oxo Species Generated from the Oxidation of a Bis(\(\mu\)-oxo)diiron(III) Complex

Hui Zheng,† Sun Jae Yoo,‡ Eckard Münck,‡ and Lawrence Que, Jr.*,†

> Department of Chemistry and Center for Metals in Biocatalysis University of Minnesota Minneapolis, Minnesota, 55455 Department of Chemistry Carnegie Mellon University Pittsburgh, Pennsylvania 15213

> > Received October 13, 1999

Iron(IV)—oxo species are proposed to be the key reactive species in many nonheme iron enzymes.¹⁻³ Spectroscopic studies implicate high-valent (μ -oxo)diiron species as intermediates in the oxidation chemistry of the diiron centers in methane monooxygenase (MMO)⁴ and ribonucleotide reductase (RNR),⁵ while mononuclear Fe^{IV}=O units have been proposed as the oxidant for several mononuclear nonheme iron enzymes.^{2,3} Our synthetic efforts to obtain models for such high-valent intermediates have yielded a series of $[Fe_2(O)_2(L)_2](ClO_4)_3$ complexes, where L is tris(2-pyridylmethyl)amine (TPA) or its ring-alkylated derivatives.⁶ Of these, only $[Fe_2(\mu-O)_2(5-Et_3-TPA)_2](ClO_4)_3$ (1) has been structurally characterized and found to have an $Fe_2(\mu-O)_2$ core.⁷ Such complexes with L = TPA or 5-alkylated TPA are valencedelocalized Fe^{III}Fe^{IV} species with an $S = \frac{3}{2}$ ground-state arising from double exchange interactions between low spin Fe^{III} ($S_1 =$ $^{1}/_{2}$) and low spin Fe^{IV} ($S_{2}=1$) centers. 8 In contrast, complexes with L = 6-Me-TPA or 6-Me₃-TPA (2) are valence localized $S = \frac{1}{2}$ species derived from the antiferromagnetic coupling between a high spin Fe^{III} ($S_1 = \frac{5}{2}$) and a high spin Fe^{IV} ($S_2 = 2$) ion. 9,10 These latter complexes have electronic properties resembling those of high-valent intermediate **X** of RNR (RNR-**X**), the species responsible for the oxidation of the Tyr122 residue to its catalytically essential radical form. 11 In this contribution, we report the synthesis of 2 (L = 6-Me₃-TPA) by one-electron

- University of Minnesota.
- Carnegie Mellon University.
- (1) Wallar, B. J.; Lipscomb, J. D. Chem. Rev. **1996**, 96, 2625–2658. (2) Que, L., Jr.; Ho, R. Y. N. Chem. Rev. **1996**, 96, 2607–2624. (3) Kappock, T. J.; Caradonna, J. P. Chem. Rev. **1996**, 96, 2659–2756.
- (4) (a) Shu, L.; Nesheim, J. C.; Kauffmann, K.; Münck, E.; Lipscomb, J. D.; Que, L., Jr. *Science* **1997**, 275, 515–518. (b) Lee, S.-K.; Fox, B. G.; Eroland, W. A.; Lipscomb, J. D.; Münck, E. *J. Am. Chem. Soc.* **1993**, *115*, 6450–6451. (c) Liu, K. E.; Valentine, A. M.; Wang, D.; Huynh, B. H.; Edmondson, D. E.; Salifoglou, A.; Lippard, S. J. *J. Am. Chem. Soc.* **1995**,
- (5) (a) Riggs-Gelasco, P. J.; Shu, L.; Chen, S.; Burdi, D.; Huynh, B. H.; Que, L., Jr.; Stubbe, J. J. Am. Chem. Soc. 1998, 120, 849-860. (b) Burdi, D.; Willems, J.-P.; Riggs-Gelasco, P.; Antholine, W. E.; Stubbe, J.; Hoffman, B. M. J. Am. Chem. Soc. 1998, 120, 12901-12919. (c) Sturgeon, B. E.; Burdi, D.; Chen, S.; Huynh, B. H.; Edmondson, D. E.; Stubbe, J.; Hoffman, B. M. J. Am. Chem. Soc. 1996, 118, 7551-7557. (d) Ravi, N.; Bollinger, J. M.; Huynh, B. H.; Edmondson, D. E.; Stubbe, J. J. Am. Chem. Soc. 1994, 116, 8007 - 8014
- (6) Que, L., Jr. J. Chem. Soc., Dalton Trans. 1997, 3933–3940. (7) Hsu, H.-F.; Dong, Y.; Shu, L.; Young, V. G., Jr.; Que, L., Jr. J. Am. Chem. Soc. 1999, 121, 5230–5237.
- (8) Dong, Y.; Fujii, H.; Hendrich, M. P.; Leising, R. A.; Pan, G.; Randall, C. R.; Wilkinson, E. C.; Zang, Y.; Que, L., Jr.; Fox, B. G.; Kauffmann, K.; Münck, E. J. Am. Chem. Soc. 1995, 117, 2778–2792.

 (9) Dong, Y.; Que, L., Jr.; Kauffmann, K.; Münck, E. J. Am. Chem. Soc. 1995, 147, 1273, 1273.
- **1995**, *117*, 11377–11378.
- (10) Dong, Y.; Zang, Y.; Shu, L.; Wilkinson, E. C.; Kauffman, K.; Münck, E.; Que, L., Jr. J. Am. Chem. Soc. 1997, 119, 12683-12684.
- (11) (a) Bollinger, J. M., Jr.; Edmondson, D. E.; Huynh, B. H.; Filley, J.; Norton, J.; Stubbe, J. Science **1991**, 253, 292–298. (b) Bollinger, J. M., Jr.; Tong, W. H.; Ravi, N.; Huynh, B. H.; Edmondson, D. E.; Stubbe, J. J. Am. Chem. Soc. 1994, 116, 8015-8023.

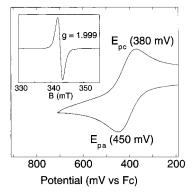
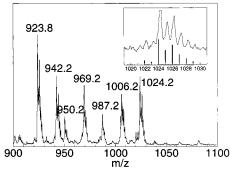
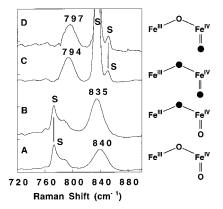


Figure 1. Cyclic voltammogram of 3 in CH₃CN (1 mM) with 0.1 M $N(C_4H_9)_4BF_4$ at -40 °C (scan rate = 100 mV/s). The potential was calibrated with ferrocene as the internal standard. The inset is an X-band EPR spectrum of 2 (T = 20 K, power = 0.1008 mW).

oxidation of its diiron(III) precursor [Fe^{III}₂(μ-O)₂(6-Me₃-TPA)₂]-(ClO₄)₂ (3), and provide resonance Raman evidence for an Fe^{III}— O-Fe^{IV}=O structure derived from the isomerization of the Fe₂(μ -O)₂ diamond core, demonstrating the accessibility of a terminal Fe^{IV}=O unit in a nonheme environment.¹²


Complex 3 can be reversibly oxidized to 2 by cyclic voltammetry ($E_{1/2} = 0.41 \text{ V vs Fc}$, $\Delta E = 70 \text{ mV}$) at $-40 \,^{\circ}\text{C}$ in CH₃CN (Figure 1). This observation suggests that 2 may also be accessed by treatment of 3 with suitable one-electron oxidants, instead of the earlier reported reactions with H2O2.8-10 Indeed addition of one equiv of $(NBu_4)_2Ce(NO_3)_6^{13}$ $(E_{1/2} = 0.62 \text{ V vs Fc}, \Delta E = 75)$ mV, -40 °C) to a 0.1 mM solution of 3 in CH₃CN at -40 °C affords a species with a nearly isotropic EPR signal at g = 1.999(Figure 1 inset), previously observed for related Fe^{III}Fe^{IV} complexes;9,10 quantification of the signal shows that 2 is produced in 85 \pm 5% yield. At higher concentrations, 2 precipitates as a brown solid. A Mössbauer study of solid 2 (for details, see Supporting Information) reveals that about 84% of the Fe present belongs to an Fe^{III}Fe^{IV} complex with parameters similar to those previously reported for [Fe₂(O)₂(6-Me-TPA)₂]³⁺.9

The elemental analysis of solid 2 (stored in dry ice prior to the analysis) fits very well to its formulation as [Fe₂(O)₂(6-Me₃-TPA)₂][Ce(NO₃)₆]•H₂O (calcd (obs): C, 37.67 (37.82); H, 3.74 (3.76); Cl, 0 (0), N, 14.65 (14.46)). Further support derives from the positive ion electrospray mass spectrum of the above reaction solution (Figure 2), which reveals ion clusters with $m/z \ge 969$ corresponding to $\{[Fe_2(O)_2(6-Me_3-TPA)_2](NO_3)(ClO_4)\}^+$ and $m/z \ge 1006$ corresponding to $\{[Fe_2(O)_2(6-Me_3-TPA)_2](ClO_4)_2\}^+$, based on their masses and isotopic distribution patterns. We also observe clusters of positive ions with $m/z \ge 987$ and 1024 corresponding to the above ions plus a water molecule (presumably from trace amounts in the solvent). These observations suggest that water is a ligand and that the cation of 2 is best formulated as $[Fe_2(O)_2(H_2O)(L)_2]^{3+}$.


Resonance Raman spectroscopy provides the key insight into the structure of 2. The resonance Raman spectrum of 2 obtained with 457.9 nm excitation shows a strong feature at 840 cm⁻¹ (Figure 3, panel A), that disappears with the decay of 2 upon warming. While neither the addition of 300 equiv of H₂¹⁶O or D₂O affects the Raman spectrum, the addition of 300 equiv of $\mathrm{H_2^{18}O}$ results in the downshift of the 840 cm⁻¹ peak by $\hat{5}$ cm⁻¹

⁽¹²⁾ We have recently obtained indirect evidence for the participation of a mononuclear nonheme Fe^{IV} =O species in the hydroxylation of a phenyl ring. Lange, S. J.; Miyake, H.; Que, L., Jr. J. Am. Chem. Soc. 1999, 121, 6330

^{(13) (}NBu₄)₂Ce(NO₃)₆ was synthesized from the ion-exchange reaction of (NH₄)₂Ce(NO₃)₆ with NBu₄Cl in aqueous solution and precipitated as a yellow solid (calcd (obs): C, 38.54 (38.39); H, 7.28 (7.36); N, 11.23 (10.95)).

Figure 2. Positive ion electrospray ionization mass spectrum of **2**. The inset shows the experimental data, while the bars below represent the isotopic distributions calculated for { $[Fe_2(O)_2(H_2O)(6-Me_3-TPA)_2](NO_3)-(ClO_4)$ }⁺. The ions at m/z of 923.8, 942.2, and 950.2 belong to diiron-(III) impurities.

Figure 3. Resonance Raman spectra of (A) **2** in CH₃CN, (B) sample A with addition of 300 equiv of $H_2^{18}O$, (C) ^{18}O -labeled **2** in CD₃CN, (D) sample C with addition of 300 equiv of H_2O . Spectra obtained with 457.9 nm excitation at 77 K. Experimental frequencies are referenced to internal solvent vibrations.

(panel B). In contrast, the $840~\rm cm^{-1}$ band downshifts by $46~\rm cm^{-1}$ in a sample derived from $^{18}\rm O$ -labeled precursor 3 (panel C). $^{14}\rm Addition$ of 300 equiv of $\rm H_2^{16}\rm O$ to this latter sample effects a 3-cm $^{-1}$ upshift of the 794 cm $^{-1}$ band (panel D). It thus appears that 2 is a species with two distinct oxygen atoms: one that contributes significantly to the vibration and does not exchange with solvent water and another that is a minor component of the vibration but does readily exchange with solvent water.

The simplest way to make the two oxygen atoms of the [Fe₂- $(\mu$ -O)₂]³⁺ core distinct is for the core to isomerize to an Fe^{III}- μ -O-Fe^{IV}=O unit as shown in Scheme 1; the proposed structure is consistent with the Raman data. The 840 cm⁻¹ frequency observed for **2** is much higher than those found for the Fe₂(μ -O)₂ cores of **1** and **3** (660-690 cm⁻¹)^{15,18} but matches that expected

Scheme 1

$$Fe^{\parallel \mid \bigcirc \bigcirc Fe^{\parallel \mid }} = Fe^{\parallel \mid \bigcirc \bigcirc Fe^{\parallel \mid }} Fe^{\parallel \mid \bigcirc \bigcirc Fe^{\parallel \mid }} = Fe^{\parallel \mid \bigcirc \bigcirc Fe^{\parallel \mid \bigcirc \bigcirc Fe^{\parallel \mid }} = Fe^{\parallel \mid \bigcirc \bigcirc Fe^{\parallel \mid \bigcirc } Fe^{\parallel \mid \bigcirc \bigcirc Fe^{\parallel \mid \bigcirc \bigcirc Fe^{\parallel \mid \bigcirc } Fe$$

for either the $\nu_{\rm asym}$ of an Fe-O-Fe unit with an angle of $\sim 160^{\circ}$ 16,17 or the $\nu_{\rm Fe-O}$ of a terminal Fe^{IV}=O unit. ¹⁸ Either may be assigned as the major component of the 840 cm⁻¹ mode, as both should downshift by ~ 40 cm⁻¹ upon ¹⁸O substitution. However all Fe-O-Fe units studied thus far exchange readily with solvent. ^{16,19} On the other hand, terminal Fe^{IV}=O moieties, thus far found only in heme complexes, can be inert to solvent exchange when the sixth coordination site is inaccessible to solvent water. ²⁰ Taken together, the data are most consistent with the labeling scheme shown for 2 in Figure 3. The vibration at 840 cm⁻¹ is proposed to arise principally from the $\nu_{\rm Fe-O}$ of an exchange-inert terminal Fe^{IV}=O moiety with a small contribution from the $\nu_{\rm asym}$ of an Fe-O-Fe unit that is susceptible to solvent exchange.

Our results demonstrate that the $Fe^{III}(O)_2Fe^{IV}$ diamond core structure can be quite flexible. The oxidation of 3 appears likely to afford a transient high-valent $Fe_2(\mu$ -O)₂ complex, as suggested by its reversible electrochemical behavior, which in turn isomerizes to give a complex with a terminal Fe^{IV} =O moiety (Scheme 1). Computational studies propose a similar isomerization for the putative $Fe^{IV}_2(\mu$ -O)₂ core of MMO intermediate \mathbf{Q} in the course of its reaction with methane. Complex 2 thus serves as an experimental precedent for this proposed isomerization and a demonstration that a terminal Fe^{IV} =O moiety can be isolated in a nonheme ligand environment.

Acknowledgment. This work was supported by the National Institutes of Health (GM 38767, L.Q. and GM 22701, E.M.). We thank Dr. K. E. Kauffmann for conducting Mössbauer studies of **2** in the earlier phase of this project.

Supporting Information Available: Mössbauer spectra and analysis for solid **2** (PDF). This material is available free of charge on the Internet via http://pubs.acs.org.

JA9936722

(16) Sanders-Loehr, J.; Wheeler, W. D.; Shiemke, A. K.; Averill, B. A.; Loehr, T. M. J. Am. Chem. Soc. **1989**, 111, 8084–8093.

(17) On the basis of the correlation of Sanders-Loehr et al., 16 the corresponding $\nu_{\rm sym}({\rm Fe-O-Fe})$ mode would be expected at $\sim\!400~{\rm cm^{-1}}$, but is not observed for 2. However the $\nu_{\rm sym}({\rm Fe-O-Fe})$ mode is similarly absent in the spectrum of the Fe^{II}Fe^{III} complex $[{\rm Fe}_2(\mu{\rm -O})({\rm O}_2{\rm CCPh}_3)_2({\rm Me}_3{\rm TACN})_2]^+$ $({\rm Me}_3{\rm TACN}=1,4,7$ -trimethyl-1,4,7-triazacyclononane), presumably due to the asymmetry of the Fe–O–Fe unit. Cohen, J. D.; Payne, S.; Hagen, K. S.; Sanders-Loehr, J. J. Am. Chem. Soc. 1997, 119, 2960–2961.

(18) (a) Kitagawa, T.; Mizutani, Y. Coord. Chem. Rev. 1994, 135/136, 685–735. (b) Proniewicz, L. M.; Bajdor, K.; Nakamoto, K. J. Phys. Chem. 1986, 90, 1760–1766. (c) Oertling, W. A.; Kean, R. T.; Wever, R.; Babcock, G. T. Inorg. Chem. 1990, 29, 2633–2645. (d) Czarnecki, K.; Kincaid, J. R.; Fujii, H. J. Am. Chem. Soc. 1999, 121, 7953–7954.

(19) Zheng, H.; Zang, Y.; Dong, Y.; Young, V. G., Jr.; Que, L., Jr. J. Am. Chem. Soc. 1999, 121, 2226–2235.

(20) (a) Higuchi, T.; Shimada, K.; Maruyama, N.; Hirobe, M. *J. Am. Chem. Soc.* **1993**, *115*, 7551–7552. (b) Lee, K. A.; Nam, W. *J. Am. Chem. Soc.* **1997**, *119*, 1916–1922. (c) Bernadou, J.; Meunier, B. *Chem. Commun.* **1998**, 2167–2172.

(21) (a) Siegbahn, P. E. M.; Crabtree, R. H. J. Am. Chem. Soc. 1997, 119, 3103–3113. (b) Siegbahn, P. E. M.; Crabtree, R. H.; Nordlund, P. J. Biol. Inorg. Chem. 1998, 3, 314–317. (c) Siegbahn, P. E. M. Inorg. Chem. 1999, 38, 2880–2889.

^{(14) [}Fe₂(μ -O)(μ -OH)(6-Me₃-TPA)₂](ClO₄)₃] (**4**) was dissolved in dry CH₃-CN and allowed to exchange with 1000 equiv of H₂¹⁸O at -20 °C. The ¹⁸O-incorporated **4** was then precipitated by the addition of THF. This solid was then dissolved in dry CH₃CN, followed by the addition of 1 equiv of NEt₃. The ¹⁸O-incorporated **3** was then recrystallized from dry THF. The incorporation of ¹⁸O into **3** was confirmed by its characteristic Fe⁻¹⁸O-Fe vibration at 662 cm⁻¹.

⁽¹⁵⁾ Wilkinson, E. C.; Dong, Y.; Zang, Y.; Fujii, H.; Fraczkiewicz, R.; Fraczkiewicz, G.; Czernuszewicz, R. S.; Que, L., Jr. J. Am. Chem. Soc. 1998, 120, 955–962.